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ABSTRACT

This template was done to help you ease your work of redacting your thesis.  It has easy

tools  such as adding an equation (with  Copy/Paste)  and it  automatically  updates the

equation numbers not just next to the equation but also whenever it is reference. The

same goes for Figure numbers within captions and within paragraphs. It can save you a

lot of time and helps you have a more professional thesis with least amount of mistakes. 

The template also shows you how to have Table of Contents updated in a second! (with a

mere Right-click and Update fields>Update Entire Table and/or Numbers Only) This is

particularly important the last few days before deadline for submitting your thesis after

applying changes suggested by your committee members. 

The same goes for equations. To enter a new equation, or Figure/Table caption, copy any 

one already in the document and paste it.  Then edit the equation. The equation/ figure/ 

Table number when updated, will have the correct chapter number and the correct 

equation/fig/table number. To refer or mention a particular figure in your text, do 

Insert>Cross-Reference and on “Reference Type”: choose Figure, Table, or Equation. 

Then on “Insert Reference to:” chose only Label and Number.  

To update ALL fields within the document do Control-A(or Command-A for mac), then 

Right-Click and Update.
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RESUMEN

El  resumen  debe  ser  la  traducción  exacta  del  Abstract.   Select  this  section  with  the

mouse, and choose Tools>Language> Spanish> for this section only. 

Make sure that each one of them, Abstract and Resumen, are only 1-page long each.
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1 CHAPTER –INTRODUCTION

Portions of Puerto Rico Western area are subject to flash flooding due to sudden, extreme

rainfall  events, some of which fail to be detected by NEXRAD radar located 104 km

away in the town of Cayey, Puerto Rico and partially obstructed by topographic features.

The use of new radars with higher spatial resolution and covering areas missed by the

NEXRAD  radar,  are  important  for  flood  forecasting  efforts,  and  for  studying  and

predicting atmospheric phenomena. 

Recently,  the  University  of  Puerto  Rico  in  Mayagüez  Campus,  Trabal  et  al.,  [2011]

initiated investigations using two (2) types of radars, namely: Off-the Grid (OTG) and

TropiNet, with radius of coverage of 15 km and 40 km, respectively. This network will

monitor the lower atmosphere where the principal atmospheric phenomena occur.  This

work represents the first time that TropiNet radar technology will be used for hydrologic

analyses and specifically for rainfall forecasting in Puerto Rico western area. 

Short-term rainfall forecasts have commonly been made using Quantitative Precipitation

Forecast (QPF).  The introduction of quantitative precipitation forecasting (QPF) in flood

warning systems has been recognized to play a fundamental role, QPF is not an easy task,

rainfall  being one of the most difficult  elements of the hydrological  cycle to forecast

[French et al., 1992] and great uncertainties still affect the performances of stochastic

and deterministic rainfall prediction models [Toth et al., 2000].
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This  capability  currently  does  not  exist  in  Puerto  Rico  Western  area,  and  is  needed

because  of  the  potential  for  flooding  in  certain  areas  (e.g.,  in  flood  plains  near  the

principal rivers).   In this research, short-term rainfall forecast analysis performed using

non linear stochastic methods. Once obtained, the rainfall forecast is introduced into a

hydrologic/inundation model Vflo and Inundation Animator configured for the Vflo Bay

Drainage Basin (MBDB).  

Specific components of the research are: the inclusion of calibration and validation of

rainfall  estimates  produced  by  the  TropiNet  radar  network,  the  development  and

validation of the stochastic rainfall prediction methodology, the calibration and validation

of the inundation algorithm at selected locations within the MBDB, and the proto-type of

an operational, real-time flood alarm system for the MBDB.  The proto-type, automated

flood alarm system will send near-real time updated inundation images to a website on

the Internet.

 This research consists of a review of the scientific literature in Chapter 2, justification for

the research in Chapter 3, objectives in Chapter 4, and the methodologies for the research

are given in Chapter 5.  The results are provided in Chapter 6.  
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2 CHAPTER- LITERATURE REVIEW

In this  section we will  provide a brief  review of the literature related to each of the

components of the proposed project.  These components include:  stochastic modeling

and  short-term  rainfall  forecasting,  radar  rainfall  estimation  and  validation,

hydrologic/inundation modeling and real-time flood forecast systems.

There are many approaches that can be used to predict the future direction and magnitude

of a physical process, such as rainfall.  Forecasting is a large and varied field having two

predominant branches: Qualitative Forecasting and Quantitative Forecasting [Hyndman,

2010].  Quantitative Forecasting should satisfy two conditions, the accessible numerical

information about the past and assumptions that some aspects of the past patterns will

continue into the future. Quantitative Forecast can be divided into two classes: time series

and explanatory models.  Explanatory models  assume that  the variables  to  be forecast

exhibits an explanatory relationship with one or more other variables, in contrast, time

series forecasting uses only information on the variable  to be forecast, and makes no

attempt to discover the factors affecting its behavior [Hyndman, 2010]. The time series

models attempt to capture past trends and extrapolate them into the future. There are

many different time series models but the basic procedure is the same for all as illustrated

in Figure   2 -1. 

1.1 Stochastic Modeling and Short-Term Rainfall Forecasting  
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Figure 2-1. Flowchart Stochastic Model based [Box and Jenkins, 1976]

Some  of  the  most  common  time  series  methods  include:  Autoregressive,  Moving

Average,  Exponential  Smoothing,  Autoregressive  Moving  Average,  Extrapolation,

Linear Prediction and others [Box and Jenkins, 1976], this research include a new type of

time  series  non  linear  with  a  stochastic  and  deterministic  components,  this  will  be

explained later.

The autoregressive (AR) method is a type of random process, which is used to predict

some types of natural phenomena, falling within the group of linear prediction formulas.

The moving average (MA) method is a way to convert actual observations to forecast by

simply averaging [Box and Jenkins, 1976]. Exponential smoothing is a popular scheme to

produce a smoothed time series; exponential smoothing assigns exponentially decreasing

weights to the observations as they get older. That is to say recent observations are given

relatively  more  weight  in  forecasting  than  the  older  observations.  With  the

Autoregressive  Moving  Average  (ARMA)  method,  models  are  used  to  describe

stationary time series, which represent the combination of an autoregressive (AR) model

and moving average (MA) model.  The order of the ARMA model in discrete time (t) is

described by two integers (p, q), that are the orders of the AR and MA parts, respectively.

A process is considered to be stationary when parameters, such as the mean and variance,

do  not  change  over  time  or  maintain  the  same  range.  Autoregressive  (AR)  or
4



Autoregressive  moving  average  (ARMA)  are  models  widely  used  in  the  prediction.

Other  time  series  methods  include  extrapolation  and  linear  prediction,  non  linear

prediction with exponential component, depending of data behavior.

Figure 2-2. Forecast 1h and 2h ahead of hourly rainfall intensity and accumulative
rainfall using event-based approaches for the event of 18 February 1953, Denver station,

Colorado, USA [Burlando et al., 1993].

Burlando et al., [1993] assumed that the rainfall processes are typically non-stationary

and skewed.  To circumvent non-stationary, the rainfall data are grouped by month of

season; thus the model is applied separately for data of a given month or a given season.

Accordingly, model parameters such as autoregressive and moving average coefficients

were determined from precipitation data pertaining to a given month or season only. 
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Parameter estimation of ARMA models based on short-term precipitation records defined

at hourly time-scales is more complex than when data is defined at longer time periods

such as months.  The main reason is the intermittent characteristic of hourly precipitation.

A popular decision rule for comparing models in the time series literature is the Akaike

Information Criterion (AIC) [Akaike, 1974]. This criterion is known as the test for the 

The maximum likelihood estimation criterion is suited for the selection of a model for

simulation purpose. For short-term forecasting, such as one step ahead forecasting, the

mean square error (MSE) criterion may be more useful [Kashyap and Rao, 1976].

Selection of a model based on an MSE criterion is quite simple and can be summarized as

follows: 

1.  Estimate the parameters  of different models using a portion,  usually  half  of the

available data. 

2. Forecast the second half of the series one step ahead by using the candidate models. 

3. Estimate the MSE corresponding to each model and 

4. Select the model that results in the least value of the MSE. 

Other examples of rainfall forecasting models were developed. PRAISE (Prediction of

Rainfall Amount Inside Storm Events) is a stochastic model to forecast rainfall height at

site. PRAISE is based on the assumption that the rainfall height accumulated on a delta

time  is  correlated  with  a  variable  that  representing  antecedent  precipitation.  The

mathematical  background is  given by a  joined probability  density  function  and by a

bivariate probability distribution, referred to the random variable, represents rainfall in a
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generic site and antecedent precipitation in the same site. The peculiarity of PRAISE is

the  availability  of  the  probabilistic  distribution  of  rainfall  heights  for  the  forecasting

hours, conditioned by the values of observed precipitation. PRAISE was applied to all the

telemetering rain gauges of the Calabria region, in Southern Italy; the calibration model

shows that the hourly rainfall series present a constant value of memory equal to 8 hours,

for every rain gauge of the Calabria  network.  As a study area the Calabria  region in

southern Italy was selected to test performances of the PRAISE model [Sirangelo et al.,

2007].

The National Weather Service is in charge of providing weather, hydrology, and climate

forecasts  and  warnings  for  the  United  States  including  Puerto  Rico  and  U.S  Virgin

islands,  working  with  a  network  of  159  high  resolutions  Doppler  weather  radars,

commonly referred to as NEXRAD (NEXRAD or Next-Generation Radar). The technical

name for NEXRAD is WSR-88D, which stands for Weather Surveillance Radar, 1988,

Doppler  (National  Climatic  Data  Center,  2012).  NEXRAD  detects  precipitation  and

atmospheric movement or wind.  The NEXRAD radars can provide information that can

help mitigate disasters caused by flash floods.  Errors can occur with the methodology for

observations far from the radar, where the earth’s curvature limits the observation of the

lower atmosphere, see  Figure   2 -3.  NEXRAD coverage has limitations in observing

below 10,000 feet or 3 kilometers (called the Gap) above sea level for the Mayagüez area

1.2 Radar Rainfall Estimation and Validation
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and nearby towns [Cruz-Pol et al., 2011].  At these locations, NEXRAD cannot “see” if

raindrops are forming within the Gap, resulting in a different rain rate than other radars

which can measure the lower portion of the cloud (OTG and TropiNet).  In the OTG and

TropiNet radars, the rain rate equations can be selected, whereas NEXRAD rain rate uses

the tropical equation with a threshold reflectivity (Z) of 53dBz,  Z values above 53 dBz

are assumed to be hail and are not considered. Other difference between NEXRAD and

TropiNet radar is that NEXRAD has Doppler capabilities given information on cloud

motion,  and  TropiNet  has  Polarimetric  capabilities  which  give  information  on

precipitation type and rate. Polarimetric  radars refer to dual polarization radars which

transmit  waves  that  have  horizontal  and  vertical  orientations.  The  horizontal  wave

provides a measure of horizontal  dimension of the cloud and rainfall  and the vertical

wave provides a measure of particle size, shape and density.
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Figure 2-3. Long range problem with NEXRAD (based on Cruz-Pol et al., 2011). The
figure does not include topography of the land surface.

The use of the new radars OTG and TropiNet with higher spatial resolution and their

observations of the lower atmosphere in the Western Puerto Rico area provide better

atmospheric  information  in  the  lower  zone  because  curvature  effect  is  minimal,  at

minimum elevation.
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3 CHAPTER – METHODOLOGY

The University  of Puerto Rico at  Mayagüez has a radar  research network and a rain

gauge network developed for this thesis. The radars network provide information with

higher spatial  and temporal  precision,  TropiNet has resolution spatial  of 60x60 meter

every  pixel  and  temporal  resolution  of  1  minute.   A  flood  warning  model  must  be

operated based only on the data  available  at  the time of forecast.  Only the radar can

display  data  in  real  time,  this  is  not  possible  using  rain  gauges.  Rain  gauges  based

systems must have a dependable and redundant telemetry system that will accurately and

efficiently transmit data a central location for processing. 

The Data from TropiNet radar was used for rainfall prediction in MBDB, using stochastic

methods. Once the rainfall forecast is obtained, the use of hydrologic models is necessary

for analysis of flooding in this area.

This chapter present a general overview of the methodology utilized in this investigation,

this  is  the  first  attempt  to  implement  news  technology  to  the  performance  of  flood

alert/warning systems. This research is center in the Puerto Rico western area and could

be applied in general to other areas or regions with the same rainfall type. 
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The study area, which encompasses the MBDB, is 819.1 km2 in area [Rojas, 2012 and

Prieto, 2007] and is located in western Puerto Rico.  The watershed also has three (3)

important water bodies: Rio Grande de Añasco, Río Guanajibo and Río Yagüez. The area

includes  twelve  (12)  municipalities:  Mayagüez ,  Añasco,  Las  Marías,  San Sebastián,

Lares, Maricao, Yauco, Adjuntas, Sabana Grande, San Germán, Hormigueros and a part

of Cabo Rojo. 

The  Río  Grande  de  Añasco  originates  near  the  Cordillera  Central,  flows  west  and

discharges into the Bahia de Añasco, the alluvial valley covers an area of approximately

46.62 km2. It is bounded by hills to the north, east and south and by the Bahia de Añasco

to the west. The tributaries of the river Añasco that flow into the lower valley are the Rio

Dagüey and the Rio Cañas.  The basin is located in west-central  Puerto Rico,  in the

municipalities of Añasco, Lares, Las Marias, Maricao, Mayagüez  and San Sebastián.

Changes  in  elevation  are shown and vary from zero meters  at  mean sea level  in  the

coastal areas to 960 meters in the mountainous areas, see Figure   3 -4.  According to U.S

Environmental Protection Agency, the upper reaches of the basin contain four connected

reservoirs; the lago Toro, Lago Prieto, Lago Guayo and Lago Yahuecas, to the Añasco

watershed downstream of the lakes which is not significant for regional water budget

estimation [Prieto, 2007]. The total lake drainage area is about 116.55 km2 and was used

as a boundary condition in the model. 

1.3 Study Area

2



Figure 3-4. Digital Elevation Model.

According  to  Flood  Insurance  Study  by  Federal  Emergency  Management  Agency

[FEMA, 2012] the land use on the Río Grande de Añasco watershed are distributed as

follows: 278 km2 are cropland; 114 km2 are pasture; 85km2 are forest and woodland; 33

km2 are idle, and 13 km2 are urban development and other uses. The vegetation in the

floodplain is primary sugar cane. Soils in the floodplain are clay loams (Unpublished Soil

Borings in Añasco Basin). 

Flood problems in this study area are serious and widespread. Periodic flood damage to

sugar cane,  pastureland, roads, and a number of residential  areas is significant.  Flood
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waters have inundated the main Río Grande de Añasco floodplain 17 times in a period of

31 years, an average of approximately once every 2 years. 

Commonly, the flood alert systems have fulfilled the role of providing flood notification

to many people and have saved lives and properties. However, many alert systems fail

due to low precision of the models and the sudden change of the atmosphere.  One of the

greatest sources of uncertainties in the prediction of flooding is the rainfall input [Rojas,

2012].  It is therefore essential to have an accurate source of rainfall data, and this is only

possible with properly working radars. 

The National Weather Service has a network of 160 Doppler-radar stations S-band (10-

cm wavelength) radar distributed across the continental United States, Alaska, Hawaii,

Guam and Puerto Rico. This network was originally designed to support Departments of

Defense, Transportation and Commerce objectives for detection and mitigation of severe

weather events [Warner et al. 2000]. Digital distributed-precipitation radar products can

be downloaded directly from the National Weather Service (NWS).

 

The NEXRAD (Next-Generation-Radar) located in Cayey measures reflectivity to 1 km

by 1 degree resolution to a diameter (distance) of 460-km.

1.4 High Resolution Rainfall Radar Product
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Figure   3 -5 shows the TropiNet radar at Lajas. A new TropiNet radar is being installed

at the UPR Agricultural Experiment Station in Isabela, which has the same characteristics

as the other two. When the three TropiNet radars are operating simultaneously the cover

area will be approximately half of the island.

Figure 3-5.TropiNet-2 at Lajas.
 The  OTG radars  were  developed  with  a  heterogeneous  network  using  off  the  shelf

hardware. The network was designed to provide detailed precipitation estimates (QPE) to

the  public,  including  the  (NWS)  National  Weather  Service  staff  in  Puerto  Rico.

Coincidentally, on the opening day of the Central American Games “Mayagüez 2010”,

NEXRAD was offline and missed a large rainfall event which occurred in the Mayagüez

area, but the “Weather Radar Network of Puerto Rico” radars were functioning and were

able to record the event.
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Radars are an active sensor that emits electromagnetic pulses into the surroundings. A

typical  radar  system  consists  of  a  least  four  components:  [Rinehart,  1997].  Lower

frequency and higher wavelength suggest that the radar has robust signal power and less

attenuation, the weather radar system discussed in this thesis is based in X-band. The

common weather radar system can be classified as listed in Table   3 -1.

Table 3-1. Radar bands with frequencies and wavelength [Rinehart, 1997])
Radar
Band

Frequency Wavelength

L 1-2 GHz 30-15 cm

S 2-4 GHz 15-8 cm

C 4-8 GHz 8-4 cm

X 8-2 GHz 4-2.5 cm

KU 12-18 GHz 2.5-1.7 cm

K 18-27 GHz 1.7-1.2 cm

Ka 27-40 GHz 1.2-0.75 cm

W 40-300 GHz 0.75-0.01 cm

The TropiNet (RXM-25) radars are Doppler polarimetric radars which allow the radar

beam to measure reflectivity close to the ground, overcoming the shadow effect of the

Earth’s curvature, while maintaining high range and azimuth.  The first of three proposed

radars  has been developed and it  is  in  operation  since February 2012, TropiNet  1 is

located  in  “Cerro  Cornelia”  Cabo  Rojo,  Puerto  Rico  18.16°N,  67.17°W,  and  200  ft

elevation (msl) approximately. The radars, working with the X-band frequency, are about

1.5 TropiNet radars
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three times stronger than that of the traditional radar frequencies at S-band making the

measurements of rainfall more attractive. They have high space and time resolution for

weather monitoring and detection, and are capable of generating very high resolution data

with a range of 40 km or maximum radial distance (horizontal range) of 80 km. 

NOAA-NWS [1995] report recommended that Z-R relationship in use at the time of the

event  be  changed  from  Z=300 R1.4 to  a  relationship  more  representative  of  raindrop

distributions in a warm tropical storm. The Z-R relationship for warm tropical events

recommended by OSF since 1995 for all WSR-88D sites experiencing heavy rainfalls,

and now adopted by TropiNet is  Z=250 R1.2. The Z-R relationship used in Puerto Rico is

the convective, also was necessary to define a maximum precipitation rate threshold for

decibels above 53 dBz [Vieux and Bedient, 1998]. The convective rainfall is a type of

precipitation with some characteristics like very high horizontal gradient and very large

vertical  depths,  these characteristics  means that  the weather  radar is  the best  tool  for

detecting convective precipitation, but the presence of different types of hydrometeors,

especially hail and storm dynamics resulting in fast varying Vertical Profile Reflectivity

(VPR) usually result in considerable random error in quantitative precipitation estimates.

Large  differences  can  be  found  especially  when  comparing  rain  gauges  and  radar

estimates because of the high temporal and spatial variability of the convective storm and

related vertical profile of reflectivity [Rossa et al., 2005].
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3.1.1 Radar Data Processing TropiNet 

A radar application in MatLab was developed to access the store of binary volume files

that contain the respective information as determined by the operator like reflectivity,

azimuth, velocity, beam width, range, elevation and other radar products. The operator

can apply any possible scan forms Range Height Indicator (RHI).

3.1.2 Calibration Performance

There is a sequence called the “Ordered Physics Based Parameters Adjustment” (OPPA)

method  developed  by  Vieux  and  Moreda  [2003].  The  calibration  process  (OPPA)

approach  include  estimates  of  the  spatially  distributed  parameters  from  physical

properties, assigns channel hydraulic properties based on measured cross-sections where

available, studies model sensitivity for the particular watershed, and identifies response

sensitivity to each parameter. 

The Inundation Analyst is a  Vflo [Vieux et  al., 2002] extension that provides images,

animations and simulated inundation, which is an indication of flood risk. The extension

is  especially  useful  for  flood  management  applications;  for  example,  a  forecast

inundation is useful for operational decisions, warning and notification, and coordinating

1.6 Inundation Model
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emergency  response.   The  Inundation  Analyst  operates  independently  from the  Vflo

model, but can use data exported from Vflo  as input for generating inundation forecasts.

The Inundation Analyst requires a digital elevation model (DEM), a flow direction map,

a channel flow direction map, and stage data. All input data must be in ESRI ASCII grid

format (*.asc). 

All input data are ASCII and the flow direction is extracted from the DEM watershed.

The DEM have units of meters,  the stage data input are exported from  Vflo  model,  a

background watershed image is included in bitmap format. The inundation results are

listed in order to create the animation, once all stage files are listed in the appropriate

order the images that are produced show the primary inundation Analyst window. 

di=
2√( x ti−x ti−1 )

2
+( y ti− y ti−1 )

2
=

2
√∆ x2

+∆ y2
(km ) (3-1)

θ=tan−1 ∆ y
∆ x

(rad ) (3-2)

v=
d (km)

t(min)
(3-3)

To  determine  the  centroid  of  the  cells  it  is  necessary  to  calculate  latitude  (La) and

longitude  (Lon) of every pixel group.

La=
1
n
∑
i=1

n

lai (3-4)
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Lon=
1
n
∑
i=1

n

loi (3-5)

Dixon and Wiener [1993] found that a convective cell have a mean velocity of 64km/hr,

this value agrees with the velocity cell measure from other research, for this model a

velocity mean of 72 km/hr approximately or 12km/10minutes was used, to apply this a

maximum distance between cloud at every lag time of 200 pixels was necessary, if the

analysis  is  every  10  minutes,  if  this  analysis  time  increase,  then  the  distance  could

increase.

3.1.3 Precipitation Estimation

The precipitation estimation is based in the main equation applied to each zone in every

window. The rain estimated ĥt+1 , k(i , j) at time (t+1¿ , is the result of the prediction interval

∆ t (10 ,20 ,30) between  the  instants  i ∆ t  and  (i+1)∆ t  correlated  with  the  variables

(α , β , Φ, δ 1 , δ 2 , δ 3) that are change in the 8,528 zones, these variables were determined

in  each zone (9x9) using  optimization  techniques  for  nonlinear  regression.  The main

equation includes three (3) fundamental products:  ht−1 ,k (i , j) , ht−2, k(i , j) , ht−1 , k(i , j )∧Z t−1 ,k (i , j )

these are the average observed rain at time t−1 and time t−2, the average is calculated

10



between the eight (8) nearest pixel to the prediction pixel, the other ht−1 ,k (i , j) is the value

of the rain at ( t−1 ),  and the  Zt−1 ,k (i , j )  is the ratio of reflectivity at (t−1).

The main equation has some restrictions in the variables  (α , β ,Φ, δ 1 , δ 2 , δ 3) that are

changing in time and space. The clouds are in movement and the values of the variables

are changing continuously. After the optimization, the deltas values are restricted to be

positive or equal to zero.

δ i ,t ,k ≥0 ; i=1,2,3 (3-6)

The variables  of  α ,β  are  the  minimum and maximum reflectivity  value  respectively

between the last two (2) windows at  (t−1) and (t−2)at the zone (9x9), these variables

are changing in time and space (every zone 9x9). Moreover the variable Φt , k changes in

every zone and windows but having a restriction limit of 1.1 in the optimization routine.

α=min ( Z t−1 , Z t−2 ) (3-7)

β=max ( Z t−1 , Z t −2 ) (3-8)

0<Φt , k ≤ 1.1 (3-9)

Once the variables were found the next step was to estimate the rain rate forecast in every

pixel. Pixels that were not possible to do the estimation prediction or there is not enough
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data at time  t−1 and/or at time  t−2, the “Kriging” interpolation method was used to

estimate the rain pixel to derive the corresponding predictors [Wackernagel, 2003]. 

3.1.4 Variables Initials and optimization

The variables  into  the  nonlinear  equation  model  are  fundamental  in  the  precipitation

forecast  trend.  A  well-planned  approach  is  needed  to  properly  solve  the  nonlinear

constrained problem. The explored approach includes two steps: (i) Identifying the initial

point and (ii) Using a constrained nonlinear optimization technique to estimate the final

parameter set for each zone and every window.

To estimate the initial values of deltas, it was not necessary to apply a constrain, so that

the initial deltas values can be positives or negatives. The main equation was linearized

taking  known  values  of  ht ,k (i , j) , ht−1 ,k (i , j) , ht−2 , k(i , j) , αt ,k , βt ,k and  Zt−1 ,k (i , j) and  the

unknown values of  δ 1t ,k , δ 2t ,k , δ 3t ,k, left the parameter phi Φ t , k temporarily ignored.

This method consists in solving the equivalent linear model and using these values as the

initial point.  The convergence of nonlinear routine heavily depends on the selections of

the initial  points. Thus, if the initial  point is far away from the optimal solutions the

algorithm may converge to a suboptimal point or may not converge. 

Linearizing and ignoring the phi variable:

12



−ln [1−(
ht ,k (i , j)−α t , k

β t , k−α t , k
)]=∑ (δ 1t ,k ht−1 , k (i , j)+δ 2t ,k ht−2 ,k (i , j )+δ 3t , k Z t−1 , k ( i , j) )+ε t , k (i , j)(3-10)

where

β t , k>ht ,k (i , j )∧αt ,k<ht , k(i , j) (3-11)

ε t , k ( i , j)  is an unknown random variable at time t  and at location (i , j) of the k  zone, the

initial values of delta are obtained by solving the linear regression by the least square

method.

The phi parameter is a bias correction factor and can be estimated using a second linear

regression.

[
h t , k ( i , j)

−α t , k

β t , k−αt ,k
]=Φ t , k¿¿

+ ε t , k ( i , j)

(3-12)

where the condition in the Equation (  3 -11) is present β t , k>ht ,k (i , j )∧αt ,k<ht , k(i , j)

ε t , k ( i , j) is an unknown random variable at time t  and at location (i , j) in the zone 9x9.

Simplifying with the initial delta estimates the following equation is obtained. 

λ t , k(i , j )=Φ t , k (θ t , k (i , j) )+ηt ,k (i , j ) (3-13)

where
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λ t , k(i , j )=
ht , k(i , j)−αt ,k

βt ,k−αt ,k

(3-14)

θt ,k (i , j )=¿¿ (3-15)

ηt ,k (i , j) is an unknown random variable at time t and at location (i , j) of the k  zone,  δ̂’s

are the previous estimated or initial values of deltas.

The  next  step  is  the  most  important  in  this  section,  finding  the  optimum  values  of

variables  δ 1t ,k , δ 2t ,k , δ 3t ,k andΦt , k from initial values determined in the previous steps.

The parameters of the nonlinear regression model can be easily estimated by solving a

constrained nonlinear optimization problem. 

δ it ,k ≥ 0; i=1,2,3 (3-16)

0<Φ t , k ≤ 1.1 (3-17)

Therefore, it can be solved by using the “sequential quadratic programming” algorithm

[Reklaitis et al., 1983; MathWorks, 2011]. The derived initial point was ingested into the

constrained  nonlinear  subroutine  to  facilitate  convergence,  the  parameters  of  the

exponential term were restricted to be positive, and the phi parameter was restricted to be

in the range of 0 to 1.1 value, this threshold was derived by inspection. The optimization

objective was minimizing the errors between the estimate values for the regression and

the observed values by radar.
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In  these  regions  in  the  prediction  where  there  are  clouds  (or  cells)  present  in  the

movement  estimation,  but  not  the  required  minimum  number  of  pixels,  the  pixels

estimation predictions were obtained by Kriging interpolation.

3.1.4.1 Least Square Method

The least squares estimate of the multiples regression parameters were used to calculate

the initial  values of deltas variables.  The multiple linear regression model is typically

stated in the following form:

y i=U 0+U 1 x1 j+U 2 x2 j+…+U N xNj+ϵ j (3-18)

where the dependent variable is y i,  U 0 , U 1 ,U2 , …, UNare the regression coefficients and

ϵ j is the random error assuming E (ϵ j )=0 and Var (ϵ j )=σ2 for j=1 ,2 , …, M. 

3.1.4.2 Kriging Interpolation

Kriging is based on the assumption that the parameter being interpolated can be treated as

a regionalized variable. A regionalized variable is intermediate between a truly random

variable and a completely deterministic variable in that it varies in a continuous manner
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from one location to the next and therefore points that they are near each other and have a

certain degree of spatial correlation, but points that are widely separated are statistically

independent [Davis, 1986].  

The  Kriging techniques are based on the estimation of weighting coefficients with an

assumption of unbiased-ness. Each data has its own coefficient  w , which represent the

influence of a particular data on the value of the final estimation at the select grid node.

The relationship between the existing data and the estimation point has been expressed by

variogram values  or  by  covariance  in  case  of  second order  stationarity.  Such values

describe the spatial dependence and the influence of the particular location in terms of its

distance and direction from the estimated location [Malvic and Balic, 2009].

The basic equation used in ordinary Kriging is as follows:

F ( x , y )=∑
i=1

n

w i f i
(3-19)

where n  is the number of scatter points in the set,  f i are the values of the scatter points,

and  w i are the weights assigned to each scatter point.  The weights are found through the

solution of the simultaneous equations: 

w1 S ( d11 )+w2 S (d12 )+w3 S (d13 )=S ( d1p )

w1 S (d12 )+w2 S (d22 )+w3 S (d23 )=S ( d2p )

w1 S (d13 )+w2 S (d23 )+w3 S ( d33 )=S ( d3 p )

(3-20)
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where S(dij ) is the model variogram evaluated at a distance equal to the distance between

pointsi and  j. It is necessary that the weights sum to unity.

w1+w2+w3=1.0 (3-21)

The Kriging techniques add some constraints to the matrices, to minimize the error, and

these  techniques  are  unbiased-ness  estimations.  These  factors  would  describe  some

external limit on the input data, which cannot simply be observed in the measured values

[Malvic and Balic, 2009]. 

3.1.5      Events selection

To select the events it was necessary to analyzed every one storm during 2012 and 2014,

the analysis has three (3) important steps: the first was taking every minute data from

TropiNet radar and plot it, for this was necessary create an efficient routine in MatLab to

determine that the radar data has not interruptions or damage, if instead the radar has

corrupt data the storm is discard to be evaluated. In some cases it was found that the radar

takes data in “Plan Position Indicator’ (PPI) and after the radar is changed to “Range

High Indicator” (RHI), such data was also discarded. 
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Table   3 -2 includes the dates and specifications of every storm to study, the information

incorporate in the column “Storm Impact” was provided by National Weather Services

(NWS) at Carolina, Puerto Rico (personal communication Carlos Ansemi). 

Table 3-2. Characteristics of Studied Storm.
Date Duration

(UTC)
Storm Type Storm Impacts

May 21, 2014
7 hr.

16:46-23:00
Heavy convective

storm
The water covers the roadway.

Ponding of water on roadways

June 29, 2014
5 hr.

17:00-22:00 Convective storm
The shower activity produced

periods of moderate to locally
downpours

June 30, 2014
4 hr.

16:00-20:15

Thunderstorms
associated to the
leading edge of a

tropical wave

Moderate to heavy rain, urban and
small stream flood advisory

July 05, 2014
4 hr.

16:44-20:00 Convective storm Heavy rain, urban flood.

The hydrological Model used in this research was  Vflo, this model use finite elements

that can simulate streamflow based on geospatial data to simulate interior locations in the

drainage network and determine channel flow and overland flow, it was fundamental a

physical configuration of the watershed to be studied, such as a Digital Elevation Model

(DEM), the topography digitalized, soils map, Land use map and information about the

1.7   Hydrologic Model Composition
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basin. Some hydrologic and hydraulic studies have been conducted by Sepulveda et al.,

[1996]; Rojas [2012]. 

Table 3-3. Drainage area peak discharge relationship [FEMA, 2012].
Drainage

Area (sq km) 
Station Name

Peak Discharge (cms)
10% 2 % 1 % 0.2 %

467.73
Rio Grande Añasco

 at Mouth
1,809 3,797 5,130 10,542

347.33
Rio Grande Añasco Near

San Sebastian
1,390 3,031 4,078 8,329

385.26
Rio Grande Añasco

upstream confluence Rio
Casey

1,527 3,289 4,432 9,070

414.88
Rio Grande Añasco

downstream confluence
Rio Casey

1,631 3,481 4,695 9,624

35.4
Rio Yaguez 

at Mouth
292 595 770 1,289

329.65
Rio Guanajibo

at Mouth 
1,352 3,896 5,745 14,294

310.53
Rio Guanajibo

Near Hormigueros
1,215 3,637 5,343 13,196

91.39
Rio Guanajibo at Hwy 119

at San German
604 1,325 1,713 2,991

303.04
Rio Guanajibo

downstream confluence
Rio Rosario

1,206 3,507 5,137 12,620

The following sections present the analysis of each variable in the hydrological model

and determining the best parameters for a good operation. The analysis was based on

existing literature within the study area.
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4 CHAPTER - RESULTS 

This chapter present the results of this research since obtaining, handling and processing

data  radar  as  well  as  the  development  of  nowcasting  model,  validation  of  results,

comparison between TropiNet radar and NEXRAD radar, configuration of  hydrological

model, implementations of nowcasting results and observed data into the hydrological

model,  configuration  of  inundation  model,  implementation  of  observed  data  and

estimated  data  from hydrological  model  to  inundation  Analysis  extension  and finally

comparison between USGS station and stations in the hydrological model.  

Numerous storms were analyzed during 2012 and 2014 to select the suitable storms to be

forecast,  some requirements to choose the storm were necessaries:  the data should be

constant  without interruptions,  the radar should have the same elevation angle for all

storms, the data may not be altered, and the radar should not stop during the storm or

change its positions. 

The TropiNet data was accessed from weather.uprm.edu server, the data is raw data in

binary  format.  Two types  of  transformations  from binary  to  net-cdf  were  needed  to

handle data and from net-cdf to mat, these transformations required the development of

subroutines  in  MatLab.  Other  transformations  necessary  included  changing  the  polar
1

1.8 Data Acquisition



coordinates to Cartesian coordinates; this was done to handle the data in the hydrological

model Vflo.

A routine was implemented to compare between Rain Gauges, TropiNet and NEXRAD

data. The NEXRAD pixels have 1 square kilometer area and the TropiNet pixels have 60

meter for each side, this means that 256 TropiNet pixels equivalent in size to one (1)

NEXRAD pixel or within one NEXRAD pixel fit 256 TropiNet pixels. Two comparison

types were done, the first was pixel to pixel, and the second was average TropiNet pixels

(256) with one NEXRAD pixel. 

Figure   4 -6 presents a comparison image on a specific minute between TropiNet and

NEXRAD, and shows the same storm but superimposed with the TropiNet image with

the NEXRAD. This assignment was made for all storms analyzed to verify the storms

location and confirm that the comparison data rain-rate is successful.

1.9 Rain gauges-TropiNet – NEXRAD comparison
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Figure 4-6. Comparison TropiNet and NEXRAD on May 06, 2014- 17:42.

Figure   4 -7 shows the comparison between NEXRAD and TropiNet at station C1, event

May 21, 2014, the difference here is the average pixels (256) in TropiNet to change the

resolution similar to NEXRAD. 
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Figure 4-7 . Comparison Rain Gauge-NEXRAD-Average 
TropiNet –C1-May 21, 2014.

It  includes  the  statistic  results  where  MSE is  the  mean  squared  errors  between Rain

gauge-TropiNet and Rain gauges-NEXRAD and RMSE is the root means squared errors.

The error  is  greater  when the comparison between rain gauge and NEXRAD data is

present,  likewise the best result  was observed between rain gauge and TropiNet  data

radar when it has the original resolution (60 meters).  

SSET=∑
i=1

n

eN ,i
2 (4-1)
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SSE is the sum-squared errors, the subscript T  refers to TropiNet and subscript N  refers

to NEXRAD.

MSET=

∑
i=1

n

eT , i
2

n

(4-2)

MSEN=

∑
i=1

n

eN , i
2

n

(4-3)

MSE is the mean square errors in TropiNet (T ) and NEXRAD (N ), and the next equation

is the roots mean squared errors RMSE with the same subscript as the last equations. 

Other  comparisons  were  done  with  different  dates  between  2012  and  2014.

Unfortunately, 20 (twenty) rain gauges were used and only few captured good data. In

most rain gauges alterations were found to the equipment due to the natural or human

factors. 

There are many methods to forecasting with long lead-time as: 8, 24, and 36 hours or

weekly, using autoregressive methods, moving averages and others. This is a special kind

of method to nowcasting (short time as minutes). In the Puerto Rico western area occur

1.10 Nowcasting Model Movement and Reflectivity Analysis 
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sudden precipitations with short durations due to atmospheric conditions and locations,

the precipitations take place immediately and its durations is around 1, 2 or 3 hours. 

This  shows  the  cloud  motion  comparison  between  observed  (right)  movement  and

estimated (left) movement at storm date March 28, 2012, 17:10 hours. Where the point

black is the centroid at initial time and the red point is the centroid at the final time. In

some cases there is more than one centroid and it can present more than one black and

red point.  This happens when the division cloud method occurs.

The current radar reflectivity is a function of the previous reflectivity images observed in

surrounding areas centered on the location of a predicted pixel, and also is a function of

the ratio of reflectivity of a pixel to reflectivity of the cell convective core. 

The second postulated rainfall  nowcasting algorithm task is  predicting  rainfall  rate  at

each pixel.

This methodology was applied to four (4) parameter unknowns (δ 1 , δ 2 , δ 3∧Φ) to find

the optimum values with a bounded constraint, first linearized the main equation, second

identify  the  initial  point  trough  a  nonlinear  regression  model  where  the  phi  Φ is

temporarily  ignored  and  the  deltas  values  initial  are  obtained  by  solving  the  linear

regression,  third  find  the  optimum values  using  a  constrained  nonlinear  optimization

1.11 Parameters Estimation
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technique  to  estimate  the  final  parameter  set  for  each  zone (9x9)  and every window

where the phi Φ parameter is a bias correction factor introduced in the optimization.

The optimum parameters for the nonlinear regression model were estimated by solving a

constrained nonlinear optimization problem (fmincon).  

Figure   4 -8 is the median of the value phi for lead-time 20 minutes.
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Figure 4-8. Phi median, storm date: March 28, 2012, lead-time of 20 min.
 Figure   4 -9 presents the distribution of initial variable phi (Φ) and the optimal value for

a lead-time of 30 minutes. 
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Figure 4-9. Distribution of initial value of phi (left) and the optimal values of phi (right)
for the storm date: March 28, 2012,for a lead-time of 30 min.
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Table 4-4. Detection results for ten storms with lead-time of 10 minutes.
Detection Results

Skill Score                                                                                   Forecast

Dates
2012032

8
2012032

9
2012043

0
2012101

0
2014021

2
2014062

9
2014070

5
2014050

6
2014063

0
2014052

1

HR
0.877411

1
0.963596

0.914171
5

0.806804
7

0.900321
3

0.948727
9

0.845550
7

0.938575
9

0.869717
6

0.914177
5

POD
0.712384

8
0.627229

4
0.639176

5
0.63715

0.529047
3

0.619745
5

0.607095
4

0.443935
8

0.629753
6

0.550901
5

FAR
0.206876

5
0.334899

4
0.294561

0.285766
5

0.340065
3

0.312183
1

0.268622
5

0.393198
3

0.212944
0.315842

8
Detection

Bias
0.898201

7
0.943059

4
0.906069

2
0.892075

2
0.801666

1
0.901032

6
0.830071

3
0.731599

4
0.800138

2
0.805226

6

PI
0.794306

5
0.751975

4
0.752929

0.719396
1

0.696434
5

0.752096
7

0.728007
9

0.663104
5

0.762175
8

0.716412

Table 4-5. Detection results for ten storms with lead-time of 20 minutes.
Detection Results

Skill Score                                                                                   Forecast

Dates
2012032

8
2012032

9
2012043

0
2012101

0
2014021

2
2014062

9
2014070

5
2014050

6
2014063

0
2014052

1

HR 0.829492
0.958617

5
0.896538

4
0.743030

7
0.864818

5
0.915475

9
0.781487

5
0.916094

3
0.812489

4
0.890568

9

POD
0.608073

4
0.468484

6
0.518394

7
0.536246

6
0.388914

2
0.455609

6
0.502432

4
0.249341

3
0.542347

3
0.438000

3

FAR
0.281657

8
0.489302

2
0.434508

9
0.364925

7
0.475115

2
0.465673

0.408989
9

0.605755
3

0.327830
6

0.417918
1

Detection 0.846495 0.917342 0.916715 0.844384 0.740951 0.852679 0.850124 0.632453 0.806861 0.752472
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Bias 5 2 9 1 6 3 8 2 1 1

PI
0.718635

9
0.645933

3
0.660141

4
0.638117

2
0.592872

5
0.635137

5
0.624976

7
0.519893

4
0.675668

7
0.636883

7
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5 CHAPTER - CONCLUSION 

Here you summarize all the important contributions of your work. Bla blab la
 The rms difference between modeled and measured TB was reduced by 32%, from 1.56 
K to 1.06 K, with the new parameters. Sensitivity analysis shows that the standard 
deviations on the CL, CW, CX parameters are 5% or less, and 8% for CC assuming 0.5K 
noise in the TB data. Correlation analysis between coefficients shows a high correlation 
between the errors in oxygen and the continuum terms.

The rms difference between modeled and measured TB was reduced by 32%, from 1.56 
K to 1.06 K, with the new parameters. Sensitivity analysis shows that the standard 
deviations on the CL, CW, CX parameters are 5% or less, and 8% for CC assuming 0.5K 
noise in the TB data. Correlation analysis between coefficients shows a high correlation 
between the errors in oxygen and the continuum terms. Bla bla bla
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